(CT signal)
(Coefficients)
Line 10: Line 10:
 
<math>4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}}</math><br>
 
<math>4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}}</math><br>
  
<math>x(t) = 2 + \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}}</math>
+
<math>x(t) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}}</math>
  
 
<br>
 
<br>
<math>x(t) = 2 + \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{2j5\pi t}{6}} + 2je^{\frac{-2j5\pi t}{6}}</math>
+
<math>x(t) = \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{2j5\pi t}{6}} + 2je^{\frac{-2j5\pi t}{6}}</math>
 
<br>
 
<br>
 
Then we can know the fundamental frequency is <math>\frac{\pi}{3}</math>. <br><br>
 
Then we can know the fundamental frequency is <math>\frac{\pi}{3}</math>. <br><br>
Also, we can get coefficients <math>a_0</math>,<math>a_2</math>,<math>a_{-2}</math>,<math>a_5</math>,
+
Also, we can get coefficients <math>a_2</math>,<math>a_{-2}</math>,<math>a_5</math>,
 
<math>a_{-5}</math>.<br><br>
 
<math>a_{-5}</math>.<br><br>
<math>a_0 = 2, a_2 = a_-2 = \frac{1}{2}, a_5 = -2j, a_-5 = 2j</math>
+
<math>a_2 = a_-2 = \frac{1}{2}, a_5 = -2j, a_-5 = 2j, <math>a_k = 0, k != 2,-2,5,-5</math> </math>

Revision as of 17:34, 25 September 2008

CT signal

$ x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\, $

Coefficients

$ cos({\frac{2\pi t}{3}}) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} $

$ 4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $

$ x(t) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $


$ x(t) = \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{2j5\pi t}{6}} + 2je^{\frac{-2j5\pi t}{6}} $
Then we can know the fundamental frequency is $ \frac{\pi}{3} $.

Also, we can get coefficients $ a_2 $,$ a_{-2} $,$ a_5 $, $ a_{-5} $.

$ a_2 = a_-2 = \frac{1}{2}, a_5 = -2j, a_-5 = 2j, <math>a_k = 0, k != 2,-2,5,-5 $ </math>

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang