(Coefficients)
(CT signal)
Line 2: Line 2:
 
== CT signal ==
 
== CT signal ==
  
<math>x(t) = 2 + cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\,</math>
+
<math>x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\,</math>
 
+
 
+
  
 
== Coefficients ==
 
== Coefficients ==

Revision as of 17:32, 25 September 2008

CT signal

$ x(t) = cos({\frac{2\pi t}{3}})+ 4sin({\frac{5\pi t}{3}})\, $

Coefficients

$ cos({\frac{2\pi t}{3}}) = \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} $

$ 4sin({\frac{5\pi t}{3}}) = -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $

$ x(t) = 2 + \frac{1}{2}e^{\frac{j2\pi t}{3}} + \frac{1}{2}e^{\frac{-j2\pi t}{3}} -2je^{\frac{j5\pi t}{3}} + 2je^{\frac{-j5\pi t}{3}} $


$ x(t) = 2 + \frac{1}{2}e^{\frac{2j2\pi t}{6}} + \frac{1}{2}e^{\frac{-2j2\pi t}{6}} -2je^{\frac{2j5\pi t}{6}} + 2je^{\frac{-2j5\pi t}{6}} $
Then we can know the fundamental frequency is $ \frac{\pi}{3} $.

Also, we can get coefficients $ a_0 $,$ a_2 $,$ a_{-2} $,$ a_5 $, $ a_{-5} $.

$ a_0 = 2, a_2 = a_-2 = \frac{1}{2}, a_5 = -2j, a_-5 = 2j $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin