(One intermediate revision by the same user not shown)
Line 5: Line 5:
 
Therefore, <math>a*X + b*\bar{X} \to a*Y + b*\bar{Y}</math> where <math>a, b \in \mathbb{C}</math>
 
Therefore, <math>a*X + b*\bar{X} \to a*Y + b*\bar{Y}</math> where <math>a, b \in \mathbb{C}</math>
  
'''3)'''First, one has to find the matrix that was used in encoding.  To find this, we take input '''<big><math>(1,0,4,0,1,0,1,0,1)</math></big>''' and turn it into matrix <math>\begin{Bmatrix}1 & 0 & 4\\ 0 & 1 & 0\\ 1 & 0 & 1\end{Bmatrix}</math>.  By multiplying the previous matrix with matrix <math>\begin{Bmatrix}a & b& c\end{Bmatrix}</math> yields the output matrix <math>\begin{Bmatrix}2 &0&0\\0&1&0\\0&0&3\end{Bmatrix}</math>.
+
'''3)'''First, one has to find the matrix that was used in encoding.  To find this, we take input '''<big><math>(1,0,4,0,1,0,1,0,1)</math></big>''' and turn it into matrix <math>\begin{Bmatrix}1 & 0 & 4\\ 0 & 1 & 0\\ 1 & 0 & 1\end{Bmatrix}</math>.  Then find the inverse of the output matrix <math>\begin{Bmatrix}2 &0&0\\0&1&0\\0&0&3\end{Bmatrix}</math> which is <math>\begin{Bmatrix}\frac{1}{2}&0&\frac{1}{3}\\0&1&0\\ 2&0&\frac{1}{3}\end{Bmatrix}</math> being the inverse of the secret matrix.
  
<math>\begin{Bmatrix}a * b* c\end{Bmatrix} * \begin{Bmatrix}1 & 0 & 4\\ 0 & 1 & 0\\ 1 & 0 & 1\end{Bmatrix} \to \begin{Bmatrix}2 &0&0\\0&1&0\\0&0&3\end{Bmatrix}</math> which yields three equations with three unknowns.
+
multiplying <math>\begin{Bmatrix}2&23&3\end{Bmatrix}</math> by the inverse of the secret matrix yields matrix <math>\begin{Bmatrix}2&23&5\end{Bmatrix}</math>
  
Solving for coefficients '''<big>a, b, c</big>'''
+
which is the answer to the secret message being B W E.

Latest revision as of 16:50, 19 September 2008

1) Bob can decrypt the message by multiplying the encrypted message by the inverse of the 3x3 matrix that his friend gave him, if it exists.

2)Yes she can! Reason being that this is a linear system in which input $ X $ yields output $ Y $ and input $ \bar{X} $ yields output $ \bar{Y} $.

Therefore, $ a*X + b*\bar{X} \to a*Y + b*\bar{Y} $ where $ a, b \in \mathbb{C} $

3)First, one has to find the matrix that was used in encoding. To find this, we take input $ (1,0,4,0,1,0,1,0,1) $ and turn it into matrix $ \begin{Bmatrix}1 & 0 & 4\\ 0 & 1 & 0\\ 1 & 0 & 1\end{Bmatrix} $. Then find the inverse of the output matrix $ \begin{Bmatrix}2 &0&0\\0&1&0\\0&0&3\end{Bmatrix} $ which is $ \begin{Bmatrix}\frac{1}{2}&0&\frac{1}{3}\\0&1&0\\ 2&0&\frac{1}{3}\end{Bmatrix} $ being the inverse of the secret matrix.

multiplying $ \begin{Bmatrix}2&23&3\end{Bmatrix} $ by the inverse of the secret matrix yields matrix $ \begin{Bmatrix}2&23&5\end{Bmatrix} $

which is the answer to the secret message being B W E.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva