Line 14: | Line 14: | ||
<math> = \cos 2t - j\sin 2t \!</math> | <math> = \cos 2t - j\sin 2t \!</math> | ||
− | + | ||
<math>\frac{e^{2jt}+e^{-2jt}}{2}=2cos2t\!</math> | <math>\frac{e^{2jt}+e^{-2jt}}{2}=2cos2t\!</math> |
Revision as of 14:59, 19 September 2008
$ e^{2jt} $ yields $ te^{-2jt} $ and $ e^{-2jt} $ yields $ te^{2jt} $
and the system is linear
since Euler's formulat states that : $ e^{jx} = \cos x + j\sin x \! $
$ e^{2jt} = \cos 2t + j\sin 2t \! $
and
$ e^{-2jt} = \cos -2t + j\sin -2t \! $ $ = \cos 2t - j\sin 2t \! $
$ \frac{e^{2jt}+e^{-2jt}}{2}=2cos2t\! $