Line 14: Line 14:
 
<math>        = \cos  2t - j\sin  2t \!</math>
 
<math>        = \cos  2t - j\sin  2t \!</math>
  
 
+
<math>\frac{te^{-2jt}+te^{2jt}}{2}=t\frac{e^{-2jt}+e^{2jt}}{2}=tcos(2t)</math>
<math>frac{e^{2jt}+e^{-2jt}/2}=2cos2t\!</math>
+
<math>frac{e^{2jt}+e^{-2jt}}{2}=2cos2t\!</math>

Revision as of 14:59, 19 September 2008

$ e^{2jt} $ yields $ te^{-2jt} $ and $ e^{-2jt} $ yields $ te^{2jt} $

and the system is linear

since Euler's formulat states that : $ e^{jx} = \cos x + j\sin x \! $

$ e^{2jt} = \cos 2t + j\sin 2t \! $

and

$ e^{-2jt} = \cos -2t + j\sin -2t \! $ $ = \cos 2t - j\sin 2t \! $

$ \frac{te^{-2jt}+te^{2jt}}{2}=t\frac{e^{-2jt}+e^{2jt}}{2}=tcos(2t) $ $ frac{e^{2jt}+e^{-2jt}}{2}=2cos2t\! $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett