Line 1: Line 1:
Given the definition of [[3.A David Hartmann - Linear Systems_ECE301Fall2008mboutin| Linear systems]] we know the response to <math>\alpha x1(t) + \beta x2(t) </math>  is  <math> \alpha y1(t)+ \beta y2(t).</math>
+
Given the definition of [[3.A David Hartmann - Linear System_ECE301Fall2008mboutin| Linear systems]] we know the response to <math>\alpha x1(t) + \beta x2(t) </math>  is  <math> \alpha y1(t)+ \beta y2(t).</math>
  
Consider the following system:
+
Consider the system:
  
  
           <math>e^{-2jt}\to F\left e^{-2jt} \right \to te^{2jt}</math>
+
           <math>e^{-2jt}\to F ( e^{-2jt} ) \to te^{2jt}</math>
  
 
From the given system:
 
From the given system:
  
<math>x(t)\to system\to tx(-t)</math>
+
<math>x(t)\to F( x(t) )\to tx(-t)</math>
  
 
From Euler's formula
 
From Euler's formula
 
<math>e^{iy}=cos{y}+i sin{y}</math>
 
<math>e^{iy}=cos{y}+i sin{y}</math>

Revision as of 14:21, 19 September 2008

Given the definition of Linear systems we know the response to $ \alpha x1(t) + \beta x2(t) $ is $ \alpha y1(t)+ \beta y2(t). $

Consider the system:


         $ e^{-2jt}\to F ( e^{-2jt} ) \to te^{2jt} $

From the given system:

$ x(t)\to F( x(t) )\to tx(-t) $

From Euler's formula $ e^{iy}=cos{y}+i sin{y} $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch