(Testing)
(Non-casual System)
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
===Part A: Understanding System’s Properties===
+
== Causal & Non-casual Systems==
== Memoryless & Memory Systems==
+
 
=Memoryless System=
+
===Casual System===
'''Memoryless system'''
+
'''Casual system''' is a system where the output <math>y(t)</math> at some specific instant <math>t_0</math> only depends on the input <math>x(t)</math> for value of <math>t</math> less than or equal to <math>t_0</math>.
=Testing=
+
 
fdasfdaf
+
====Example====
==lol==
+
Memoryless system
testing
+
:<math>y \left( t \right) = 1 + x \left( t \right) \cos \left( \omega t \right)</math>
 +
 
 +
===Non-casual System===
 +
'''Non-casual system''' is a system that has some dependence on input values from the future (in addition to possible dependence on past or current input values).
 +
====Example====
 +
:<math>y(t)=\int_{-\infty}^{\infty } \sin (t+\tau) x(\tau)\,d\tau</math>

Latest revision as of 15:45, 19 September 2008

Causal & Non-casual Systems

Casual System

Casual system is a system where the output $ y(t) $ at some specific instant $ t_0 $ only depends on the input $ x(t) $ for value of $ t $ less than or equal to $ t_0 $.

Example

Memoryless system

$ y \left( t \right) = 1 + x \left( t \right) \cos \left( \omega t \right) $

Non-casual System

Non-casual system is a system that has some dependence on input values from the future (in addition to possible dependence on past or current input values).

Example

$ y(t)=\int_{-\infty}^{\infty } \sin (t+\tau) x(\tau)\,d\tau $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood