(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>e^{2jt} \rightarrow <box>system</box> \rightarrow te^{-2jt}\!</math><br>
+
----
<math>e^{-2jt} \rightarrow system \rightarrow te^{2jt}\!</math><br>
+
'''Given:'''
 +
 
 +
For a linear system we have:
 +
 
 +
<math>e^{j2t}\rightarrow [system]\rightarrow te^{-j2t}\!</math><br>
 +
<math>e^{-j2t}\rightarrow [system]\rightarrow te^{j2t}\!</math><br>
 +
 
 +
----
 +
 
 +
To find the response of the system above we first note that
 +
 
 +
<math>e^{j2t} = cos(2t) + jsin(2t)\!</math>
 +
 
 +
<math>e^{-j2t} = cos(2t) - jsin(2t)\!</math>
 +
 
 +
 
 +
We can use this to represent our input signal as follows:
 +
 
 +
<math>cos(2t) = 0.5\times[cos(2t) + jsin(2t) + cos(2t) - jsin(2t)] = 0.5\times[e^{j2t} + e^{-j2t}]\!</math>
 +
 
 +
 
 +
Since the system is linear, we know that:
 +
 
 +
<math>0.5\times[e^{j2t} + e^{-j2t}]\rightarrow[system]\rightarrow0.5[te^{j2t}+te^{-j2t}]\!</math>
 +
 
 +
 
 +
So the response of the system to the input excitation <math>cos(2t)\!</math> is
 +
 
 +
<math>0.5[te^{j2t}+te^{-j2t}] = 0.5[tcos(2t) + jtsin(2t) + tcos(2t) - jsin(2t)] = tcos(2t)\!</math>

Latest revision as of 10:55, 19 September 2008


Given:

For a linear system we have:

$ e^{j2t}\rightarrow [system]\rightarrow te^{-j2t}\! $
$ e^{-j2t}\rightarrow [system]\rightarrow te^{j2t}\! $


To find the response of the system above we first note that

$ e^{j2t} = cos(2t) + jsin(2t)\! $

$ e^{-j2t} = cos(2t) - jsin(2t)\! $


We can use this to represent our input signal as follows:

$ cos(2t) = 0.5\times[cos(2t) + jsin(2t) + cos(2t) - jsin(2t)] = 0.5\times[e^{j2t} + e^{-j2t}]\! $


Since the system is linear, we know that:

$ 0.5\times[e^{j2t} + e^{-j2t}]\rightarrow[system]\rightarrow0.5[te^{j2t}+te^{-j2t}]\! $


So the response of the system to the input excitation $ cos(2t)\! $ is

$ 0.5[te^{j2t}+te^{-j2t}] = 0.5[tcos(2t) + jtsin(2t) + tcos(2t) - jsin(2t)] = tcos(2t)\! $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood