Line 4: Line 4:
 
For a linear system we have:
 
For a linear system we have:
  
<math>e^{j2t} \rightarrow [system] \rightarrow te^{-j2t}\!</math><br>
+
<math>e^{j2t}\rightarrow [system]\rightarrow te^{-j2t}\!</math><br>
<math>e^{-j2t} \rightarrow [system] \rightarrow te^{j2t}\!</math><br>
+
<math>e^{-j2t}\rightarrow [system]\rightarrow te^{j2t}\!</math><br>
  
 
----
 
----
Line 20: Line 20:
 
<math>cos(2t) = 0.5\times[cos(2t) + jsin(2t) + cos(2t) - jsin(2t)] = 0.5\times[e^{j2t} + e^{-j2t}]\!</math>
 
<math>cos(2t) = 0.5\times[cos(2t) + jsin(2t) + cos(2t) - jsin(2t)] = 0.5\times[e^{j2t} + e^{-j2t}]\!</math>
  
Since the system is linear we know that:
+
Since the system is linear, we know that:
 +
 
 +
<math>0.5\times[e^{j2t} + e^{-j2t}]\rightarrow[system]\rightarrow0.5[te^{j2t}+te^{-j2t}]\!</math>

Revision as of 10:45, 19 September 2008


Given:

For a linear system we have:

$ e^{j2t}\rightarrow [system]\rightarrow te^{-j2t}\! $
$ e^{-j2t}\rightarrow [system]\rightarrow te^{j2t}\! $


To find the response of the system above we first note that

$ e^{j2t} = cos(2t) + jsin(2t)\! $

$ e^{-j2t} = cos(2t) - jsin(2t)\! $

We can use this to represent our input signal as follows:


$ cos(2t) = 0.5\times[cos(2t) + jsin(2t) + cos(2t) - jsin(2t)] = 0.5\times[e^{j2t} + e^{-j2t}]\! $

Since the system is linear, we know that:

$ 0.5\times[e^{j2t} + e^{-j2t}]\rightarrow[system]\rightarrow0.5[te^{j2t}+te^{-j2t}]\! $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood