Line 11: Line 11:
 
To find the response of the system above we first note that  
 
To find the response of the system above we first note that  
  
<math>e^{j2t} = cos(2t) + jsin(2t)\!</math> and that
+
<math>e^{j2t} = cos(2t) + jsin(2t)\!</math>
  
 
<math>e^{-j2t} = cos(2t) - jsin(2t)\!</math>
 
<math>e^{-j2t} = cos(2t) - jsin(2t)\!</math>

Revision as of 09:11, 19 September 2008


Given:

For a linear system we have:

$ e^{j2t} \rightarrow [system] \rightarrow te^{-j2t}\! $
$ e^{-j2t} \rightarrow [system] \rightarrow te^{j2t}\! $


To find the response of the system above we first note that

$ e^{j2t} = cos(2t) + jsin(2t)\! $

$ e^{-j2t} = cos(2t) - jsin(2t)\! $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood