Line 12: Line 12:
  
 
<math>e^{j2t} = cos(2t) + jsin(2t)\!</math> and that
 
<math>e^{j2t} = cos(2t) + jsin(2t)\!</math> and that
 +
 
<math>e^{-j2t} = cos(2t) - jsin(2t)\!</math>
 
<math>e^{-j2t} = cos(2t) - jsin(2t)\!</math>

Revision as of 09:11, 19 September 2008


Given:

For a linear system we have:

$ e^{j2t} \rightarrow [system] \rightarrow te^{-j2t}\! $
$ e^{-j2t} \rightarrow [system] \rightarrow te^{j2t}\! $


To find the response of the system above we first note that

$ e^{j2t} = cos(2t) + jsin(2t)\! $ and that

$ e^{-j2t} = cos(2t) - jsin(2t)\! $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin