Line 6: Line 6:
 
<math>\left[ \begin{array}{ccc} 1 & 0 & 4 \\
 
<math>\left[ \begin{array}{ccc} 1 & 0 & 4 \\
 
  0 & 1 & 0 \\
 
  0 & 1 & 0 \\
  1 & 0 & 1\end{array}\right]\times\[begin{ccc}x\end]</math>
+
  1 & 0 & 1\end{array}\right]\times
 +
\left[ \begin{array}{ccc} X \end{array}\right] =
 +
\left[ \begin{array}{ccc} 2 & 0 & 0\\
 +
0 & 1 & 0\\
 +
0 & 0 & 3\end{array}\right]</math>
 +
 
 +
We must find the inverse of the secret matrix to decode the message.

Revision as of 06:21, 19 September 2008

1. Bob can decrypt the message by multiplying the encrypted message with the inverse of the secret matrix.


2. Eve can not decrypt the message without the inverse of the secret matrix. She does however have all the necessary information to find said inverse.


3. $ \left[ \begin{array}{ccc} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]\times \left[ \begin{array}{ccc} X \end{array}\right] = \left[ \begin{array}{ccc} 2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 3\end{array}\right] $

We must find the inverse of the secret matrix to decode the message.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva