(New page: Provided that: : <math> e^{j2t} </math>----------> System ----------> <math> te^{-2jt} </math><br> : <math> e^{-j2t} </math>----------> System ----------> <math> te^{2jt} </math><br>)
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
Provided that:
+
Provided that:<br>
: <math> e^{j2t} </math>----------> System ----------> <math> te^{-2jt} </math><br>
+
(1) <math> e^{j2t}\ </math> ----------> System ----------> <math> te^{-2jt}\ </math><br>
: <math> e^{-j2t} </math>----------> System ----------> <math> te^{2jt} </math><br>
+
(2) <math> e^{-j2t}\ </math>----------> System ----------> <math> te^{2jt}\ </math><br>
 +
(3) The System is Linear. <br><br>
 +
 
 +
The following should hold true:<br><br>
 +
(1)<math> e^{j2t} + e^{-j2t}\ </math> ----------> System -----------> <math> te^{-2jt} + te^{2jt}\ </math><br>
 +
(2)<math> {e^{j2t} + e^{-j2t}\over 2} </math> ----------> System -----------> <math> {te^{-2jt} + te^{2jt}\over 2} </math><br><br>
 +
 
 +
The Key to approach this problem is: What is <math> \cos 2t\ </math>?
 +
<br>
 +
(1) <math> \cos 2t\ = {e^{j2t} + e^{-j2t} \over 2} </math> by Euler's Formalas.<br>
 +
(2) The response to (1) is <math>{te^{-2jt} + te^{2jt}\over 2} </math><br><br>
 +
It is unnecessary to say this but it is <math> t\ \cos 2t\ </math>

Latest revision as of 06:10, 19 September 2008

Provided that:
(1) $ e^{j2t}\ $ ----------> System ----------> $ te^{-2jt}\ $
(2) $ e^{-j2t}\ $----------> System ----------> $ te^{2jt}\ $
(3) The System is Linear.

The following should hold true:

(1)$ e^{j2t} + e^{-j2t}\ $ ----------> System -----------> $ te^{-2jt} + te^{2jt}\ $
(2)$ {e^{j2t} + e^{-j2t}\over 2} $ ----------> System -----------> $ {te^{-2jt} + te^{2jt}\over 2} $

The Key to approach this problem is: What is $ \cos 2t\ $?
(1) $ \cos 2t\ = {e^{j2t} + e^{-j2t} \over 2} $ by Euler's Formalas.
(2) The response to (1) is $ {te^{-2jt} + te^{2jt}\over 2} $

It is unnecessary to say this but it is $ t\ \cos 2t\ $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett