(New page: The two functions given to us happen to be part of the breakdown of cos(2t). <math>cos(2t)=e^{2jt}+e^{-2jt}</math> Referenced: Max Paganini)
 
 
Line 1: Line 1:
 
The two functions given to us happen to be part of the breakdown of cos(2t).  
 
The two functions given to us happen to be part of the breakdown of cos(2t).  
  
<math>cos(2t)=e^{2jt}+e^{-2jt}</math>
+
<math>cos(2t)=\frac{1}{2}e^{2jt}+\frac{1}{2}e^{-2jt}</math>
  
 +
If the response to <math>e^{2jt}=te^{-2jt}</math> and <math>e^{-2jt}=te^{2jt}</math>
 +
then,
 +
cos(2t) -> System -> <math>t\frac{1}{2}e^{-2jt} + t\frac{1}{2}e^{2jt} = tcos(2t)</math>
  
  

Latest revision as of 05:58, 19 September 2008

The two functions given to us happen to be part of the breakdown of cos(2t).

$ cos(2t)=\frac{1}{2}e^{2jt}+\frac{1}{2}e^{-2jt} $

If the response to $ e^{2jt}=te^{-2jt} $ and $ e^{-2jt}=te^{2jt} $ then, cos(2t) -> System -> $ t\frac{1}{2}e^{-2jt} + t\frac{1}{2}e^{2jt} = tcos(2t) $




Referenced: Max Paganini

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett