(The basics of linearity)
(The basics of linearity)
Line 12: Line 12:
  
 
<math>1/2 e^{(2jt)}</math> --->[system]---><math> 1/2 te^{(-2jt)}</math>
 
<math>1/2 e^{(2jt)}</math> --->[system]---><math> 1/2 te^{(-2jt)}</math>
 +
 +
<math>1/2 e^{(-2jt)}</math> --->[system]---><math> 1/2 te^{(2jt)}</math>

Revision as of 05:18, 19 September 2008

The basics of linearity

$ e^{(2jt)} $ --->[system]--->$ te^{(-2jt)} $

$ e^{(-2jt)} $ --->[system]--->$ te^{(2jt)} $

$ \cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2} $

$ \cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2} $

$ cos 2t = {e^{2jt} \over 2} + {e^{-2jt} \over 2} $

$ 1/2 e^{(2jt)} $ --->[system]--->$ 1/2 te^{(-2jt)} $

$ 1/2 e^{(-2jt)} $ --->[system]--->$ 1/2 te^{(2jt)} $

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin