(→The basics of linearity) |
(→The basics of linearity) |
||
Line 4: | Line 4: | ||
<math>e^{(-2jt)}</math> --->[system]---><math>te^{(2jt)}</math> | <math>e^{(-2jt)}</math> --->[system]---><math>te^{(2jt)}</math> | ||
+ | |||
+ | <math>ae^{(2jt)}</math> --->[system]---><math>ate^{(-2jt)}</math> | ||
+ | |||
+ | <math>be^{(-2jt)}</math> --->[system]---><math>bte^{(-2jt)}</math> | ||
<math>\cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2}</math> | <math>\cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2}</math> | ||
<math>\cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2}</math> | <math>\cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2}</math> |
Revision as of 05:11, 19 September 2008
The basics of linearity
$ e^{(2jt)} $ --->[system]--->$ te^{(-2jt)} $
$ e^{(-2jt)} $ --->[system]--->$ te^{(2jt)} $
$ ae^{(2jt)} $ --->[system]--->$ ate^{(-2jt)} $
$ be^{(-2jt)} $ --->[system]--->$ bte^{(-2jt)} $
$ \cos x = \mathrm{Re}\{e^{ix}\} ={e^{ix} + e^{-ix} \over 2} $
$ \cos 2t = \mathrm{Re}\{e^{jt}\} ={e^{2jt} + e^{-2jt} \over 2} $