(New page: exp(2jt) => texp(-2jt) exp(-2jt) =>texp(2jt) cos(2t) => t/cos(2t))
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
exp(2jt) => texp(-2jt)
 
exp(2jt) => texp(-2jt)
 +
 
exp(-2jt) =>texp(2jt)
 
exp(-2jt) =>texp(2jt)
cos(2t) => t/cos(2t)
+
 
 +
use Eulers Identity
 +
 
 +
 
 +
cos(2t) = .5exp(2t) + .5exp(-2t) => t(.5)exp(-2t) + t(.5)exp(2t) =>t(.5exp(2t) + .5exp(-2t)) => tcos(2t)

Latest revision as of 05:01, 19 September 2008

exp(2jt) => texp(-2jt)

exp(-2jt) =>texp(2jt)

use Eulers Identity


cos(2t) = .5exp(2t) + .5exp(-2t) => t(.5)exp(-2t) + t(.5)exp(2t) =>t(.5exp(2t) + .5exp(-2t)) => tcos(2t)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood