(New page: == Time Invariance == Definition of a time invariant system: "A system is '''Time Invariant''' if the behavior and characteristics of the system are fixed over time... Specifically, a sys...)
 
(Time Invariance)
 
(One intermediate revision by the same user not shown)
Line 6: Line 6:
 
         <math> x2(t) = x1(t-t0) </math>
 
         <math> x2(t) = x1(t-t0) </math>
 
         <math> y2(t) = sin[x2(t)] = sin[x1(t-t0)] </math>
 
         <math> y2(t) = sin[x2(t)] = sin[x1(t-t0)] </math>
        Therefore it can be shown that:
+
 
 +
Therefore it can be shown that:
 +
 
 
         <math> y1(t-t0) = sin[x1(t-t0)] </math>
 
         <math> y1(t-t0) = sin[x1(t-t0)] </math>
  
Line 13: Line 15:
 
'''Example:''' Let <math> y1(t) = x1(2t)
 
'''Example:''' Let <math> y1(t) = x1(2t)
 
         <math> x2(t) = x1(t-t0) </math>
 
         <math> x2(t) = x1(t-t0) </math>
         <math> y2(t) = x2(2t) = x1(2(t-t0))
+
         <math> y2(t) = x2(2t) = x1(2(t-t0)) </math>
        Therefore it can be shown that:
+
 
         <math> y1(t-t0) != x1(2t-2t0)
+
Therefore it can be shown that:
 +
 
 +
         <math> y1(t-t0) != x1(2t-2t0) </math>

Latest revision as of 04:16, 19 September 2008

Time Invariance

Definition of a time invariant system: "A system is Time Invariant if the behavior and characteristics of the system are fixed over time... Specifically, a system is time invariant if a time shift in the input signal results in an identical time shift in the output signal." - (Oppenheim Willsky pgs. 50-51)

Example: Let $ y1(t) = sin[x1(t)] $

       $  x2(t) = x1(t-t0)  $
       $  y2(t) = sin[x2(t)] = sin[x1(t-t0)]  $

Therefore it can be shown that:

       $  y1(t-t0) = sin[x1(t-t0)]  $

Definition of a time variant system: Any system that does not follow the characteristics of a time invariant system is considered to be Time Variant. Specifically, a system is time variant if a time shift in the input signal results in some different time shift in the output signal.

Example: Let $ y1(t) = x1(2t) <math> x2(t) = x1(t-t0) $

       $  y2(t) = x2(2t) = x1(2(t-t0))  $

Therefore it can be shown that:

       $  y1(t-t0) != x1(2t-2t0)  $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva