(One intermediate revision by the same user not shown)
Line 9: Line 9:
 
Given that:
 
Given that:
  
<math> \cos{t} = \frac{\exp^{jt} + \exp{-jt}}{2}</math>
+
<math> \cos{t} = \frac{e^{jt} + e^{-jt}}{2}</math>
  
  
 
Then
 
Then
  
<math> \cos{2t} \to t \frac{\exp^{-2jt} + \exp{2jt}}{2} = t \cos{t} </math>
+
<math> \cos{2t} \to t \frac{e^{-2jt} + e^{2jt}}{2} = t \cos{2t} </math>

Latest revision as of 02:18, 19 September 2008

Through the system, the following transformations are made:

$ e^{2jt} \to t e^{-2jt} $

$ e^{2jt} \to t e^{-2jt} $

By observation, we know the system multiplies by t and is time reversing.

Given that:

$ \cos{t} = \frac{e^{jt} + e^{-jt}}{2} $


Then

$ \cos{2t} \to t \frac{e^{-2jt} + e^{2jt}}{2} = t \cos{2t} $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010