(New page: <math>e^2jt = te^(-2jt)</math> <br> <math>e^2jt = te^(-2jt)</math> <br> =><math>\cos(2t)=\frac{e^{2jt}+e^{-2jt}}{2}</math>) |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <math>e^2jt | + | <math>e^{2jt} --> system --> te^{-2jt}</math> <br> |
− | <math>e^2jt | + | <math>e^{-2jt} --> system --> te^{2jt}</math> <br> |
− | =><math>\cos(2t)=\frac{e^{2jt}+e^{-2jt}}{2}</math> | + | =><math>\cos(2t)</math> --> system |
+ | =<math>\frac{e^{2jt}+e^{-2jt}}{2}</math> --> system<br> | ||
+ | =<math>\frac{1}{2}(e^{2jt}+e^{-2jt})</math> -->system<br> | ||
+ | =<math>\frac{1}{2}e^{2jt}-->system +\frac{1}{2}e^{-2jt}</math>-->system <br> | ||
+ | =<math>\frac{1}{2}te^{-2jt} +\frac{1}{2}te^{2jt}</math><br> | ||
+ | =<math>\frac{1}{2}t(e^{-2jt} +e^{2jt})</math><br> | ||
+ | =<math>t\cos(2t)</math><br> |
Latest revision as of 15:52, 18 September 2008
$ e^{2jt} --> system --> te^{-2jt} $
$ e^{-2jt} --> system --> te^{2jt} $
=>$ \cos(2t) $ --> system
=$ \frac{e^{2jt}+e^{-2jt}}{2} $ --> system
=$ \frac{1}{2}(e^{2jt}+e^{-2jt}) $ -->system
=$ \frac{1}{2}e^{2jt}-->system +\frac{1}{2}e^{-2jt} $-->system
=$ \frac{1}{2}te^{-2jt} +\frac{1}{2}te^{2jt} $
=$ \frac{1}{2}t(e^{-2jt} +e^{2jt}) $
=$ t\cos(2t) $