Line 1: Line 1:
<math>e^2jt = te^(-2jt)</math> <br>
+
<math>e^{2jt} --> system --> te^{-2jt}</math> <br>
<math>e^2jt = te^(-2jt)</math> <br>
+
<math>e^{-2jt} --> system --> te^{2jt}</math> <br>
  
=><math>\cos(2t)=\frac{e^2jt+e^(-2jt)}{2}</math><br>
+
=><math>\cos(2t)</math> --> system
=<math>\frac{1}{2}
+
=<math>\frac{e^{2jt}+e^{-2jt}}{2}</math> --> system<br>  
 +
=<math>\frac{1}{2}(e^{2jt}+e^{-2jt})</math> -->system

Revision as of 15:49, 18 September 2008

$ e^{2jt} --> system --> te^{-2jt} $
$ e^{-2jt} --> system --> te^{2jt} $

=>$ \cos(2t) $ --> system =$ \frac{e^{2jt}+e^{-2jt}}{2} $ --> system
=$ \frac{1}{2}(e^{2jt}+e^{-2jt}) $ -->system

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin