(→Can Eve decrypt the message without finding the inverse of the secret matrix?) |
(→How can Bob Decrypt the Message?) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== How can Bob Decrypt the Message? == | == How can Bob Decrypt the Message? == | ||
+ | Bob can use the inverse of the secret matrix | ||
+ | |||
+ | Explaination: | ||
Let A be the 3x3 secret matrix message. | Let A be the 3x3 secret matrix message. | ||
Line 19: | Line 22: | ||
== Can Eve decrypt the message without finding the inverse of the secret matrix? == | == Can Eve decrypt the message without finding the inverse of the secret matrix? == | ||
+ | YES. Here is the explaination: | ||
+ | |||
+ | Let, | ||
<math>\,B=B_1+B_2+B_3\,</math> and <math>\,C=C_1+C_2+C_3\,</math> | <math>\,B=B_1+B_2+B_3\,</math> and <math>\,C=C_1+C_2+C_3\,</math> | ||
Line 42: | Line 48: | ||
<math>\,B_new = B_1new+B_2new+B_3new = n*B_1+p*B_2+q*B_3 \,</math> | <math>\,B_new = B_1new+B_2new+B_3new = n*B_1+p*B_2+q*B_3 \,</math> | ||
− | so all Eve need to do is to express the encrypted message in terms of a*[2,0,0]+b*[0,1,0]+c*[0,0,3] | + | so all Eve need to do is to express each row of the encrypted message in terms of a*[2,0,0]+b*[0,1,0]+c*[0,0,3] |
− | then the original code is a*[1,0,4]+b*[0,1,0]+c*[1,0,1] | + | then the corresponding row of the original code is a*[1,0,4]+b*[0,1,0]+c*[1,0,1] |
== What is the Decrypted Message? == | == What is the Decrypted Message? == | ||
− | The | + | The encrypted message is |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <math>\, | + | <math>\,C=(2,23,3)\,</math> |
+ | we can write it as | ||
− | + | <math>\,C=1\cdot (2,0,0)+23\cdot (0,1,0)+1\cdot (0,0,3)\,</math> | |
− | + | Given system is linear, the corresponding output is | |
− | <math>\, | + | <math>\,B=1\cdot (1,0,4)+23\cdot (0,1,0)+1\cdot (1,0,1)=(2,23,5)\,</math> |
− | + | So, the original message is "B,W,E". |
Latest revision as of 16:17, 18 September 2008
How can Bob Decrypt the Message?
Bob can use the inverse of the secret matrix
Explaination:
Let A be the 3x3 secret matrix message.
$ \,A=\left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right] \, $
Let B be the 3x3 matrix for the original message.
$ \,B=\left[ \begin{array}{ccc} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array} \right] \, $
Correspondingly, let C be the crypted message
From the poblem: $ \,C = B * A\, $
So $ \,C*A^{-1} = B * A * A^{-1} = B\, $, i.e. $ \,B = C*A^{-1} $
Thus Bob can decrypt the message by finding the inverse of the secret matrix.
Can Eve decrypt the message without finding the inverse of the secret matrix?
YES. Here is the explaination:
Let, $ \,B=B_1+B_2+B_3\, $ and $ \,C=C_1+C_2+C_3\, $
Thus,we can have:
$ \,B_1 = C_1*A^{-1}\, $
$ \,B_2 = C_2*A^{-1}\, $
$ \,B_3 = C_3*A^{-1}\, $
if we can decompose $ \,C_new=n*C_1+p*C_2+q*C_3\, $ we have:
$ \,B_1new = n*C_1*A^{-1} = n*B_1\, $
$ \,B_2new = p*C_2*A^{-1} = p*B_2\, $
$ \,B_3new = q*C_3*A^{-1} = q*B_3\, $
So we can get:
$ \,B_new = B_1new+B_2new+B_3new = n*B_1+p*B_2+q*B_3 \, $
so all Eve need to do is to express each row of the encrypted message in terms of a*[2,0,0]+b*[0,1,0]+c*[0,0,3]
then the corresponding row of the original code is a*[1,0,4]+b*[0,1,0]+c*[1,0,1]
What is the Decrypted Message?
The encrypted message is
$ \,C=(2,23,3)\, $
we can write it as
$ \,C=1\cdot (2,0,0)+23\cdot (0,1,0)+1\cdot (0,0,3)\, $
Given system is linear, the corresponding output is
$ \,B=1\cdot (1,0,4)+23\cdot (0,1,0)+1\cdot (1,0,1)=(2,23,5)\, $
So, the original message is "B,W,E".