(Can Eve decrypt the message without finding the inverse of the secret matrix?)
(Can Eve decrypt the message without finding the inverse of the secret matrix?)
Line 19: Line 19:
 
== Can Eve decrypt the message without finding the inverse of the secret matrix? ==
 
== Can Eve decrypt the message without finding the inverse of the secret matrix? ==
  
if we write B as
+
<math>\,B=B_1+B_2+B_3\,</math> and <math>\,C=C_1+C_2+C_3\,</math>
<math>\,B=\left[ \begin{array}{ccc} B_{1} & B_{2} & B_{3} \end{array} \right] \,</math>
+
(write in conbimation of column vector)
+
  
Similarly, we write C as
+
Thus,we can have:
<math>\,C=\left[ \begin{array}{ccc} C_{1} & C_{2} & C_{3} \end{array} \right] \,</math>
+
  
Thus,based on the multiplication of Matrix,we can have:
+
<math>\,B_1 = C_1*A^{-1}\,</math>
<math>\,C_1 = B*A\,</math>, same for <math>\,C_2\,</math> and <math>\,C_3\,</math>
+
  
which means
+
<math>\,B_2 = C_2*A^{-1}\,</math>
  
<math>\,C_1 = B*A_1 = B_1*A_1+B_2*A_2+B_3*A_3\,</math>
+
<math>\,B_3 = C_3*A^{-1}\,</math>
  
<math>\,C_2 = B*A = B_1*A_1+B_2*A_2+B_3*A_3\,</math>
+
if we can decompose <math>\,C_new=n*C_1+p*C_2+q*C_3\,</math>
 +
we have:
  
<math>\,C_3 = B*A = B_1*A_1+B_2*A_2+B_3*A_3\,</math>
+
<math>\,B_1new = n*C_1*A^{-1} = n*B_1\,</math>
  
if we multiply <math>B_1</math> by n,<math>B_2</math> by p,<math>B_3</math> by q,
+
<math>\,B_2new = p*C_2*A^{-1} = p*B_2\,</math>
we have:
+
 
 +
<math>\,B_3new = q*C_3*A^{-1} = q*B_3\,</math>
  
<math>\,C_1new = B*A_1 = n*B_1*a_11+p*B_2*a_21+q*B_3*a_31\,</math>
+
So we can get:
  
<math>\,C_2new = B*A_2 = n*B_1*a_21+p*B_2*a_22+q*B_3*a_23\,</math>
+
<math>\,B_new = B_1new+B_2new+B_3new = n*B_1+p*B_2+q*B_3 \,</math>
  
<math>\,C_3new = B*A_3 = n*B_1*a_31+p*B_2*a_32+q*B_3*a_33\,</math>
+
so all Eve need to do is to express the encrypted message in terms of a*[2,0,0]+b*[0,1,0]+c*[0,0,3]
  
and the reverse is also true
+
then the original code is a*[1,0,4]+b*[0,1,0]+c*[1,0,1]
  
 
== What is the Decrypted Message? ==
 
== What is the Decrypted Message? ==

Revision as of 16:11, 18 September 2008

How can Bob Decrypt the Message?

Let A be the 3x3 secret matrix message.

$ \,A=\left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right] \, $

Let B be the 3x3 matrix for the original message.

$ \,B=\left[ \begin{array}{ccc} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array} \right] \, $

Correspondingly, let C be the crypted message

From the poblem: $ \,C = B * A\, $

So $ \,C*A^{-1} = B * A * A^{-1} = B\, $, i.e. $ \,B = C*A^{-1} $

Thus Bob can decrypt the message by finding the inverse of the secret matrix.

Can Eve decrypt the message without finding the inverse of the secret matrix?

$ \,B=B_1+B_2+B_3\, $ and $ \,C=C_1+C_2+C_3\, $

Thus,we can have:

$ \,B_1 = C_1*A^{-1}\, $

$ \,B_2 = C_2*A^{-1}\, $

$ \,B_3 = C_3*A^{-1}\, $

if we can decompose $ \,C_new=n*C_1+p*C_2+q*C_3\, $ we have:

$ \,B_1new = n*C_1*A^{-1} = n*B_1\, $

$ \,B_2new = p*C_2*A^{-1} = p*B_2\, $

$ \,B_3new = q*C_3*A^{-1} = q*B_3\, $

So we can get:

$ \,B_new = B_1new+B_2new+B_3new = n*B_1+p*B_2+q*B_3 \, $

so all Eve need to do is to express the encrypted message in terms of a*[2,0,0]+b*[0,1,0]+c*[0,0,3]

then the original code is a*[1,0,4]+b*[0,1,0]+c*[1,0,1]

What is the Decrypted Message?

The given encrypted message is

$ \,e=(2,23,3)\, $


This can be rewritten as a linear combination of the given system result vectors

$ \,e=ae_1+be_2+ce_3\, $

$ \,e=(2,23,3)=1\cdot (2,0,0)+23\cdot (0,1,0)+1\cdot (0,0,3)\, $


Because the system s linear, we can write the input as

$ \,m=am_1+bm_2+cm_3\, $

$ \,m=1\cdot (1,0,4)+23\cdot (0,1,0)+1\cdot (1,0,1)=(2,23,5)\, $


Therefore, the unencrypted message is "BWE".

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood