Line 14: Line 14:
  
 
<math>x(t)\to system\to tx(-t)</math>
 
<math>x(t)\to system\to tx(-t)</math>
 +
 +
We know that:
 +
<math>x(t)=cos(2t)=\frac{e^{2jt}+e^{-2jt}{2}</math>

Revision as of 08:17, 18 September 2008

As discussed in class,a system is called linear if for any constants a,b belongs to phi and for anputs x1(t), x2(t) (x1[n],x2[n]) yielding output y1(t) , y2(t) respectively the response to

ax1(t) + bx2(t) is ay1(t)+by2(t).

Consider the following system: $ e^{2jt}\to system\to te^{-2jt} $


         $ e^{-2jt}\to system\to te^{2jt} $

From the given system:

$ x(t)\to system\to tx(-t) $

We know that: $ x(t)=cos(2t)=\frac{e^{2jt}+e^{-2jt}{2} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood