Line 6: | Line 6: | ||
Consider the following system: | Consider the following system: | ||
<math>e^{2jt}\to system\to te^{-2jt}</math> | <math>e^{2jt}\to system\to te^{-2jt}</math> | ||
− | <math>e^{-2jt}\to system\to te^{2jt} | + | |
+ | |||
+ | |||
+ | <math>e^{-2jt}\to system\to te^{2jt}</math> |
Revision as of 08:13, 18 September 2008
As discussed in class,a system is called linear if for any constants a,b belongs to phi and for anputs x1(t), x2(t) (x1[n],x2[n]) yielding output y1(t) , y2(t) respectively the response to
ax1(t) + bx2(t) is ay1(t)+by2(t).
Consider the following system: $ e^{2jt}\to system\to te^{-2jt} $
$ e^{-2jt}\to system\to te^{2jt} $