Line 6: Line 6:
 
Consider the following system:
 
Consider the following system:
 
<math>e^{2jt}\to system\to te^{-2jt}</math>
 
<math>e^{2jt}\to system\to te^{-2jt}</math>
<math>e^{-2jt}\to system\to te^{2jt}</</math>
+
 
 +
 
 +
 
 +
<math>e^{-2jt}\to system\to te^{2jt}</math>

Revision as of 08:13, 18 September 2008

As discussed in class,a system is called linear if for any constants a,b belongs to phi and for anputs x1(t), x2(t) (x1[n],x2[n]) yielding output y1(t) , y2(t) respectively the response to

ax1(t) + bx2(t) is ay1(t)+by2(t).

Consider the following system: $ e^{2jt}\to system\to te^{-2jt} $


$ e^{-2jt}\to system\to te^{2jt} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood