(2 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
<math>x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} </math>
 
<math>x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} </math>
  
The input, cos(2t) is equal to <math>\frac{1}{2}(e^{j2t} + e^{-j2t})</math>
+
The input, <math>cos(2t) = \frac{1}{2}(e^{j2t} + e^{-j2t})</math>
  
 
From the properties of a linear system <math>ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t)</math>,  
 
From the properties of a linear system <math>ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t)</math>,  
Line 13: Line 13:
  
 
<math>y(t) = \frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt}</math>
 
<math>y(t) = \frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt}</math>
 +
 
<math>y(t) = t[\frac{1}{2}(e^{-2jt}+e^{2jt})]</math>
 
<math>y(t) = t[\frac{1}{2}(e^{-2jt}+e^{2jt})]</math>
 +
 
<math>y(t) = tcos(2t)</math>
 
<math>y(t) = tcos(2t)</math>
 +
 +
Therefore, <math>x(t) = cos(2t) \rightarrow linear-system \rightarrow y(t) = tcos(2t) </math>

Latest revision as of 08:15, 18 September 2008

Part B: The basics of linearity

$ x_1(t) = e^{2jt} \rightarrow linear-system \rightarrow y_1(t) = te^{-2jt} $

$ x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} $

The input, $ cos(2t) = \frac{1}{2}(e^{j2t} + e^{-j2t}) $

From the properties of a linear system $ ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t) $, where $ a = b = \frac{1}{2} $

The response to cos(2t) is:

$ y(t) = \frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt} $

$ y(t) = t[\frac{1}{2}(e^{-2jt}+e^{2jt})] $

$ y(t) = tcos(2t) $

Therefore, $ x(t) = cos(2t) \rightarrow linear-system \rightarrow y(t) = tcos(2t) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood