Line 7: | Line 7: | ||
The input, cos(2t) is equal to <math>\frac{1}{2}(e^{j2t} + e^{-j2t})</math> | The input, cos(2t) is equal to <math>\frac{1}{2}(e^{j2t} + e^{-j2t})</math> | ||
− | From the properties of a linear system <math>ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t)</math>, | + | From the properties of a linear system <math>ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t)</math>, |
+ | where <math>a = b = \frac{1}{2}</math> | ||
The response to cos(2t) is <math>\frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt}</math> | The response to cos(2t) is <math>\frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt}</math> |
Revision as of 08:10, 18 September 2008
Part B: The basics of linearity
$ x_1(t) = e^{2jt} \rightarrow linear-system \rightarrow y_1(t) = te^{-2jt} $
$ x_2(t) = e^{-2jt} \rightarrow linear-system \rightarrow y_2(t) = te^{2jt} $
The input, cos(2t) is equal to $ \frac{1}{2}(e^{j2t} + e^{-j2t}) $
From the properties of a linear system $ ax_1(t) + bx_2(t) \rightarrow linear-system \rightarrow ay_1(t) + by_2(t) $, where $ a = b = \frac{1}{2} $
The response to cos(2t) is $ \frac{1}{2}te^{-2jt} + \frac{1}{2}te^{2jt} $