(10 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
x(t) = cos2t
 
x(t) = cos2t
  
after using Euler's Formula, <math>x(t) = \frac{1}{2} \times e^{2*j*t}
+
after using Euler's Formula
 +
 
 +
<math>x(t) = \frac{1}{2} * e^{2jt} + \frac{1}{2} * e^{-2jt}</math>
 +
 
 +
<math>y(t) = t * x(-t)</math>
 +
 
 +
<math>y(t) = \frac{t}{2} * (e^{-2jt} + e^{2jt})</math>
 +
 
 +
<math>y(t) = \frac{t}{2} * (cos(2t) - jsin(2t) + cos(2t) + jsin(2t))</math>
 +
 
 +
<math>y(t) = \frac{t}{2} * (2cos(2t))</math>
 +
 
 +
 
 +
 
 +
<math>y(t) = t * cos(2t)</math>

Latest revision as of 07:36, 18 September 2008

So the input will be x(t) and output will be y(t).

x(t) = cos2t

after using Euler's Formula

$ x(t) = \frac{1}{2} * e^{2jt} + \frac{1}{2} * e^{-2jt} $

$ y(t) = t * x(-t) $

$ y(t) = \frac{t}{2} * (e^{-2jt} + e^{2jt}) $

$ y(t) = \frac{t}{2} * (cos(2t) - jsin(2t) + cos(2t) + jsin(2t)) $

$ y(t) = \frac{t}{2} * (2cos(2t)) $


$ y(t) = t * cos(2t) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett