(New page: So the input will be x(t) and output will be y(t). x(t) = cos2t after using Euler's Formula, x(t) =) |
|||
(12 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
x(t) = cos2t | x(t) = cos2t | ||
− | after using Euler's Formula | + | after using Euler's Formula |
+ | |||
+ | <math>x(t) = \frac{1}{2} * e^{2jt} + \frac{1}{2} * e^{-2jt}</math> | ||
+ | |||
+ | <math>y(t) = t * x(-t)</math> | ||
+ | |||
+ | <math>y(t) = \frac{t}{2} * (e^{-2jt} + e^{2jt})</math> | ||
+ | |||
+ | <math>y(t) = \frac{t}{2} * (cos(2t) - jsin(2t) + cos(2t) + jsin(2t))</math> | ||
+ | |||
+ | <math>y(t) = \frac{t}{2} * (2cos(2t))</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>y(t) = t * cos(2t)</math> |
Latest revision as of 07:36, 18 September 2008
So the input will be x(t) and output will be y(t).
x(t) = cos2t
after using Euler's Formula
$ x(t) = \frac{1}{2} * e^{2jt} + \frac{1}{2} * e^{-2jt} $
$ y(t) = t * x(-t) $
$ y(t) = \frac{t}{2} * (e^{-2jt} + e^{2jt}) $
$ y(t) = \frac{t}{2} * (cos(2t) - jsin(2t) + cos(2t) + jsin(2t)) $
$ y(t) = \frac{t}{2} * (2cos(2t)) $
$ y(t) = t * cos(2t) $