(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
  
 
Based on the above,
 
Based on the above,
<math>x(t)=cos(2t)</math> would yield <math>y(t)=tx(-t)=tcos(-2t)</math>.
+
<math>x(t)=cos(2t)</math> would yield <math>y(t)=tx(-t)=tcos(-2t)=tcos(2t)</math>.
  
 
----
 
----
Line 9: Line 9:
  
 
If <math>x_1(t)=e^{2jt}</math> and <math>x_2(t)=e^{-2jt}</math>,
 
If <math>x_1(t)=e^{2jt}</math> and <math>x_2(t)=e^{-2jt}</math>,
Take the input signal to be <math>\frac{1,2}(x_1(t)+x_2(t))</math>.  
+
Take the input signal to be <math>\frac{1}{2}(x_1(t)+x_2(t))</math>.  
The response to the input is <math>y(t)=\frac{1,2}y_1(t)+\frac{1,2}y_2(t)</math> because the system is linear.
+
The response to the input is <math>y(t)=\frac{1}{2}y_1(t)+\frac{1}{2}y_2(t)</math> because the system is linear.
  
<math>\frac{1,2}e^{2jt}+\frac{1,2}e^{-2jt}\rightarrow system\rightarrow t(\frac{1,2}e^{-2jt}+\frac{1,2}e^{2jt})</math>
+
<math>\frac{1}{2}(e^{2jt}+e^{-2jt})\rightarrow system\rightarrow t(\frac{1}{2}e^{-2jt}+\frac{1}{2}e^{2jt})</math>
  
<math>t(\frac{1,2}e^{-2jt}+\frac{1,2}e^{2jt})=t(\frac{1,2}(e^{-2jt}+e^{2jt})</</math>
+
<math>=t(\frac{1}{2}(e^{-2jt}+e^{2jt})</math>
 
+
<math>=t(\frac{1}{2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t))</math>
                            <math>=t(\frac{1,2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t))</math>
+
<math>=t(\frac{1}{2}(cos(2t)-jsin(2t)+cos(2t)+jsin2(t))</math>
 
+
<math>=t(\frac{1}{2}(2cos(2t))</math>
                            <math>=t(\frac{1,2}(cos(2t)-jsin(2t)+cos(2t)+jsin2(t))</math>
+
<math>=tcos(2t)</math>
     
+
                            <math>=t(\frac{1,2}(2cos(2t))</math>
+
 
+
                            <math>=tcos(2t)</math>
+

Latest revision as of 10:05, 18 September 2008

since $ x(t)=e^{2jt} $ yields $ y(t)=te^{-2jt} $ and $ x(t)=e^{-2jt} $ yields $ x(t)=te^{2jt} $, it is easy to see that x(t) yields y(t)=t*x(-t).

Based on the above, $ x(t)=cos(2t) $ would yield $ y(t)=tx(-t)=tcos(-2t)=tcos(2t) $.


The above solution works for this case, but it does not show the properties of linearity.

If $ x_1(t)=e^{2jt} $ and $ x_2(t)=e^{-2jt} $, Take the input signal to be $ \frac{1}{2}(x_1(t)+x_2(t)) $. The response to the input is $ y(t)=\frac{1}{2}y_1(t)+\frac{1}{2}y_2(t) $ because the system is linear.

$ \frac{1}{2}(e^{2jt}+e^{-2jt})\rightarrow system\rightarrow t(\frac{1}{2}e^{-2jt}+\frac{1}{2}e^{2jt}) $

$ =t(\frac{1}{2}(e^{-2jt}+e^{2jt}) $ $ =t(\frac{1}{2}(cos(-2t)+jsin(-2t)+cos(2t)+jsin2(t)) $ $ =t(\frac{1}{2}(cos(2t)-jsin(2t)+cos(2t)+jsin2(t)) $ $ =t(\frac{1}{2}(2cos(2t)) $ $ =tcos(2t) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett