(Basics of Linearity)
(Basics of Linearity)
 
(10 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
<math>a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t)</math>
 
<math>a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t)</math>
  
 +
'''Problem: '''
 
We are given a linear system that behaves as follows,
 
We are given a linear system that behaves as follows,
  
Line 15: Line 16:
  
 
cos(2t) = <math>\frac{e^{2tj}+e^{-2tj}}{2}</math>
 
cos(2t) = <math>\frac{e^{2tj}+e^{-2tj}}{2}</math>
= <math>\frac{1}{2}*(x1(t) + x2(t))</math>  
+
 
 +
= <math>\frac{1}{2}*(x1(t) + x2(t))</math>  
 +
 
 
= <math>\frac{1}{2}*x1(t) + \frac{1}{2}*x2(t))</math>
 
= <math>\frac{1}{2}*x1(t) + \frac{1}{2}*x2(t))</math>
 +
 +
Using the defition of linearity above,
 +
 +
a = <math>\frac{1}{2}</math>
 +
 +
b = <math>\frac{1}{2}</math>
 +
 +
x1(t) = <math>e^{2tj}</math>
 +
 +
x2(t) = <math>e^{-2tj}</math>
 +
 +
<math>a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t)</math>
 +
 +
yields the following results,
 +
 +
= <math>\frac{1}{2}*t*x1(-t) + \frac{1}{2}*t*x2(-t))</math>
 +
 +
plugging in for x1(-t) and x2(-t) and factoring out the t,
 +
 +
<math>t*\frac{e^{2tj}+e^{-2tj}}{2}</math>
 +
 +
converting the exponential back to cosine yields the output of the sytem,
 +
 +
'''System output = t * cos(2t) '''

Latest revision as of 07:29, 18 September 2008

Basics of Linearity

Definition of Linearity: For any constants a and b (that are complext numbers), and inputs x1(t) and x2(t) which yield outputs y1(t) and y2(t),

$ a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t) $

Problem: We are given a linear system that behaves as follows,

$ e^{2jt} --> Sys --> t*e^{-2jt} $

and asked to find the response to find the response to cos(2t).


Solution: Using the properties of cosine we can convert cos(2t) to an exponential function.

cos(2t) = $ \frac{e^{2tj}+e^{-2tj}}{2} $

= $ \frac{1}{2}*(x1(t) + x2(t)) $

= $ \frac{1}{2}*x1(t) + \frac{1}{2}*x2(t)) $

Using the defition of linearity above,

a = $ \frac{1}{2} $

b = $ \frac{1}{2} $

x1(t) = $ e^{2tj} $

x2(t) = $ e^{-2tj} $

$ a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t) $

yields the following results,

= $ \frac{1}{2}*t*x1(-t) + \frac{1}{2}*t*x2(-t)) $

plugging in for x1(-t) and x2(-t) and factoring out the t,

$ t*\frac{e^{2tj}+e^{-2tj}}{2} $

converting the exponential back to cosine yields the output of the sytem,

System output = t * cos(2t)

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009