(→Basics of Linearity) |
(→Basics of Linearity) |
||
Line 14: | Line 14: | ||
Using the properties of cosine we can convert cos(2t) to an exponential function. | Using the properties of cosine we can convert cos(2t) to an exponential function. | ||
− | cos(2t) = <math>\frac{e^{2tj}+e^{-2tj}}{2}</math> = <math>\frac{1}{2}*(x1(t) + x2(t))</math> = <math>\frac{1}{2}*x1(t) + \frac{1}{2}*x2(t))</math> | + | cos(2t) = <math>\frac{e^{2tj}+e^{-2tj}}{2}</math> |
+ | = <math>\frac{1}{2}*(x1(t) + x2(t))</math> | ||
+ | = <math>\frac{1}{2}*x1(t) + \frac{1}{2}*x2(t))</math> |
Revision as of 07:18, 18 September 2008
Basics of Linearity
Definition of Linearity: For any constants a and b (that are complext numbers), and inputs x1(t) and x2(t) which yield outputs y1(t) and y2(t),
$ a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t) $
We are given a linear system that behaves as follows,
$ e^{2jt} --> Sys --> t*e^{-2jt} $
and asked to find the response to find the response to cos(2t).
Solution:
Using the properties of cosine we can convert cos(2t) to an exponential function.
cos(2t) = $ \frac{e^{2tj}+e^{-2tj}}{2} $
= $ \frac{1}{2}*(x1(t) + x2(t)) $
= $ \frac{1}{2}*x1(t) + \frac{1}{2}*x2(t)) $