(New page: ==Basics of Linearity == Given :<math>e^{2 x i}=t e^{-2 x i}\, </math> :<math>e^{-2 x i}=t e^{2 x i}\, </math> :<math>\cos x = \dfrac{e^{i x}+e^{-i x}}{2}</math> :<math>\cos 2x = \dfrac{e...)
 
(Basics of Linearity)
Line 8: Line 8:
  
 
The Systems response to  
 
The Systems response to  
<math>\cos 2x =<\math>  
+
<math>\cos 2x </math>
 
is  
 
is  
:<math>\cos 2x = \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} </math>
+
<math>\ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} </math>

Revision as of 06:58, 18 September 2008

Basics of Linearity

Given

$ e^{2 x i}=t e^{-2 x i}\, $
$ e^{-2 x i}=t e^{2 x i}\, $
$ \cos x = \dfrac{e^{i x}+e^{-i x}}{2} $
$ \cos 2x = \dfrac{e^{2 i x}+e^{-2 i x}}{2} $

The Systems response to $ \cos 2x $ is $ \ \dfrac{t e^{-2 i x} + t e^{2 i x}}{2} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett