(Examples Including the Above Notations)
(Is a Element of)
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
Here is a short list of different mathematical notations commonly used.  Mathematicians use these to make proofs more compact and clearer (plus, it guarantees them that they still have jobs given the fact that the field Mathematics is centuries old :P ).  While it may be difficult to get used to at first, these can make writing answers quicker, which may help on exams...
+
Here is a short list of different mathematical notations commonly used.  Mathematicians use these to make proofs more compact and clearer (plus, it guarantees them that they still have jobs given the fact that the field Mathematics is centuries old :P ).  While it may be difficult to get accustomed to at first, these can make writing answers quicker and more thorough, which may help on exams...
  
 
== Special Sets ==
 
== Special Sets ==
Line 16: Line 16:
  
 
== Is a Element of ==
 
== Is a Element of ==
The symbol <math>\,\in \,</math> is read as "is a element of".  It is used to describe a variable as a an element of a set.  Examples include:
+
The symbol <math>\,\in \,</math> is read as "is a element of".  It is used to describe a variable as an element of a set.  Examples include:
  
  
Line 36: Line 36:
  
 
== Some Commonly Used Notations ==
 
== Some Commonly Used Notations ==
<math>\,\exists \epsilon \in \mathbb{R}\,</math> such that <math>\,|x(t)|<\epsilon , \forall t\in \mathbb{R}\,</math> is read as "there exists some real number epsilon such that the function <math>x(t)</math> is bounded above by positive epsilon and below by negative epsilon, for all real values of t" or simply x(t) is bounded for all t.
+
<math>\,\exists \epsilon \in \mathbb{R}\,</math> such that <math>\,|x(t)|<\epsilon , \forall t\in \mathbb{R}\,</math>
 +
 
 +
is read as "there exists some real number epsilon such that the function <math>x(t)</math> is bounded above by positive epsilon and below by negative epsilon, for all real values of t" or simply x(t) is bounded for all t.
 +
 
 +
 
 +
There is no <math>\,\delta \in \mathbb{R}\,</math> such that <math>\,|y(t)|<\delta , \forall t\in\mathbb{R}\,</math>
 +
 
 +
is read as "there is no real number delta such that the function y(t) is bounded above by positive delta and below by negative delta for all real values of t" or simply y(t) is unbounded.
  
 
== Examples Including the Above Notations ==
 
== Examples Including the Above Notations ==
(Feel free to add any others)
+
(Anyone, feel free to add more)
  
 
[[HW2.A Jeff Kubascik_ECE301Fall2008mboutin]]
 
[[HW2.A Jeff Kubascik_ECE301Fall2008mboutin]]

Latest revision as of 19:05, 17 September 2008

Here is a short list of different mathematical notations commonly used. Mathematicians use these to make proofs more compact and clearer (plus, it guarantees them that they still have jobs given the fact that the field Mathematics is centuries old :P ). While it may be difficult to get accustomed to at first, these can make writing answers quicker and more thorough, which may help on exams...

Special Sets

The following list is the shorthand way to describe several special sets (sets are simply a collection of numbers).


$ \,\mathbb{N}\, $ denotes the set of all natural numbers, i.e. {1, 2, 3, ...}

$ \,\mathbb{Z}\, $ denotes the set of all integers, i.e. {..., -2, -1, 0, 1, 2, ...}

$ \,\mathbb{Q}\, $ denotes the set of all rational numbers, i.e. all numbers that can be written as a ratio of two integers

$ \,\mathbb{R}\, $ denotes the set of all real numbers, i.e. any number without $ \,j\, $

$ \,\mathbb{C}\, $ denotes the set of all complex numbers, i.e. numbers of the form $ \,a+bj\, $, this includes rational numbers

Is a Element of

The symbol $ \,\in \, $ is read as "is a element of". It is used to describe a variable as an element of a set. Examples include:


$ \,x\in \mathbb{R}\, $ is the shorthand way of saying "x is a rational number"

$ \,s,t\in \mathbb{Z}\, $ is the shorthand way of saying "s and t are integers"

There Exists

The symbol $ \,\exists \, $ is read as "there exists". It is used to say that there exists a value that satisfies some condition. Examples include:


$ \,\exists t\in \mathbb{Z}\, $ is the short hand way of saying "there exists an integer t"

For All

The symbol $ \,\forall \, $ is read as "for all". It is used to say that a condition/ result applies for all elements in a set. Examples include:


$ \,\forall c\in \mathbb{Q}\, $ is the short hand way of saying "for all rational numbers c"

Some Commonly Used Notations

$ \,\exists \epsilon \in \mathbb{R}\, $ such that $ \,|x(t)|<\epsilon , \forall t\in \mathbb{R}\, $

is read as "there exists some real number epsilon such that the function $ x(t) $ is bounded above by positive epsilon and below by negative epsilon, for all real values of t" or simply x(t) is bounded for all t.


There is no $ \,\delta \in \mathbb{R}\, $ such that $ \,|y(t)|<\delta , \forall t\in\mathbb{R}\, $

is read as "there is no real number delta such that the function y(t) is bounded above by positive delta and below by negative delta for all real values of t" or simply y(t) is unbounded.

Examples Including the Above Notations

(Anyone, feel free to add more)

HW2.A Jeff Kubascik_ECE301Fall2008mboutin

HW2.C Jeff Kubascik_ECE301Fall2008mboutin

HW2.D Jeff Kubascik_ECE301Fall2008mboutin

HW3.A Jeff Kubascik_ECE301Fall2008mboutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett