(System Response)
(System Response)
Line 6: Line 6:
 
Since the system is a LTI system, we have  
 
Since the system is a LTI system, we have  
  
Output = Response(<math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math>)
+
Output = Response of <math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math>
  
       = Response of(<math>\frac{e^{2jt}\,</math>)+ Response of(<math>\frac{e^{-2jt}\,</math>)
+
       = Response of <math>\frac{e^{2jt}\,</math> + Response of <math>\frac{e^{-2jt}\,</math>
  
 
       <math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math> (derive from given conditions)
 
       <math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math> (derive from given conditions)

Revision as of 08:21, 18 September 2008

System Response

Based on the Euler Formula, $ \cos(2t)\,= \frac{e^{2jt}+e^{-2jt}}{2}\, $.

We already had the response of $ e^{2jt}\, $ is $ te^{-2jt}\, $ and the response of $ e^{-2jt}\, $ is $ te^{2jt}\, $.

Since the system is a LTI system, we have

Output = Response of $ \frac{e^{2jt}+e^{-2jt}}{2}\, $

      = Response of $ \frac{e^{2jt}\, $ + Response of $ \frac{e^{-2jt}\, $
     $ =\frac{te^{2jt}+te^{-2jt}}{2}\, $ (derive from given conditions)
     $ =t\frac{e^{2jt}+e^{-2jt}}{2}\, $
     $ =t\cos(2t)\, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett