(→System Response) |
(→System Response) |
||
Line 7: | Line 7: | ||
Output = Response(<math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math>) | Output = Response(<math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math>) | ||
+ | |||
+ | = Response(<math>\frac{e^{2jt}</math>)+ | ||
<math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math> | <math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math> |
Revision as of 07:16, 18 September 2008
System Response
Based on the Euler Formula, $ \cos(2t)\,= \frac{e^{2jt}+e^{-2jt}}{2}\, $.
We already had the response of $ e^{2jt}\, $ is $ te^{-2jt}\, $ and the response of $ e^{-2jt}\, $ is $ te^{2jt}\, $.
Since the system is a LTI system, we have
Output = Response($ \frac{e^{2jt}+e^{-2jt}}{2}\, $)
= Response($ \frac{e^{2jt} $)+
$ =\frac{te^{2jt}+te^{-2jt}}{2}\, $
$ =t\frac{e^{2jt}+e^{-2jt}}{2}\, $
$ =t\cos(2t)\, $