(System Response)
(System Response)
Line 7: Line 7:
  
 
Output = Response(<math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math>)
 
Output = Response(<math>\frac{e^{2jt}+e^{-2jt}}{2}\,</math>)
 +
 +
      = Response(<math>\frac{e^{2jt}</math>)+
  
 
       <math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math>
 
       <math>=\frac{te^{2jt}+te^{-2jt}}{2}\,</math>

Revision as of 07:16, 18 September 2008

System Response

Based on the Euler Formula, $ \cos(2t)\,= \frac{e^{2jt}+e^{-2jt}}{2}\, $.

We already had the response of $ e^{2jt}\, $ is $ te^{-2jt}\, $ and the response of $ e^{-2jt}\, $ is $ te^{2jt}\, $.

Since the system is a LTI system, we have

Output = Response($ \frac{e^{2jt}+e^{-2jt}}{2}\, $)

      = Response($ \frac{e^{2jt} $)+
     $ =\frac{te^{2jt}+te^{-2jt}}{2}\, $
     $ =t\frac{e^{2jt}+e^{-2jt}}{2}\, $
     $ =t\cos(2t)\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett