(New page: Hmm... this space seems empty...)
 
Line 1: Line 1:
Hmm... this space seems empty...
+
We are told that a system is linear and given inputs
 +
 
 +
<math>\,x_1(t)=e^{2jt}\,</math> yields <math>\,y_1(t)=te^{-2jt}\,</math>
 +
 
 +
<math>\,x_2(t)=e^{-2jt}\,</math> yields <math>\,y_2(t)=te^{2jt}\,</math>
 +
 
 +
 
 +
The input
 +
 
 +
<math>\,x(t)=cos(2t)\,</math>
 +
 
 +
can be rewritten as
 +
 
 +
<math>\,x(t)=\frac{e^{2jt}+e^{-2jt}}{2}\,</math>
 +
 
 +
<math>\,x(t)=\frac{1}{2}e^{2jt}+\frac{1}{2}e^{-2jt}\,</math>

Revision as of 16:35, 17 September 2008

We are told that a system is linear and given inputs

$ \,x_1(t)=e^{2jt}\, $ yields $ \,y_1(t)=te^{-2jt}\, $

$ \,x_2(t)=e^{-2jt}\, $ yields $ \,y_2(t)=te^{2jt}\, $


The input

$ \,x(t)=cos(2t)\, $

can be rewritten as

$ \,x(t)=\frac{e^{2jt}+e^{-2jt}}{2}\, $

$ \,x(t)=\frac{1}{2}e^{2jt}+\frac{1}{2}e^{-2jt}\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang