(→Formal Definition of a Stable System) |
|||
Line 2: | Line 2: | ||
A system is called stable if for any bounded input <math>\,x(t)\,</math> | A system is called stable if for any bounded input <math>\,x(t)\,</math> | ||
− | <math>\,\exists \epsilon \in \mathbb{R}\,</math> such that <math>\,|x(t)|<\epsilon , \forall t\in\mathbb{R}\,</math> | + | ( <math>\,\exists \epsilon \in \mathbb{R}\,</math> such that <math>\,|x(t)|<\epsilon , \forall t\in\mathbb{R}\,</math> ) |
+ | |||
yields a bounded output <math>\,y(t)\,</math>. | yields a bounded output <math>\,y(t)\,</math>. | ||
− | <math>\,\exists \delta \in \mathbb{R}\,</math> such that <math>\,|y(t)|<\delta , \forall t\in\mathbb{R}\,</math> | + | ( <math>\,\exists \delta \in \mathbb{R}\,</math> such that <math>\,|y(t)|<\delta , \forall t\in\mathbb{R}\,</math> ) |
== Formal Definition of an Unstable System == | == Formal Definition of an Unstable System == | ||
+ | |||
+ | A system is called unstable if there exists a bounded input <math>\,x(t)\,</math> | ||
+ | |||
+ | ( <math>\,\exists \epsilon \in \mathbb{R}\,</math> such that <math>\,|x(t)|<\epsilon , \forall t\in\mathbb{R}\,</math> ) | ||
+ | |||
+ | |||
+ | that yields a unbounded output <math>\,y(t)\,</math>. | ||
+ | |||
+ | ( there is no <math>\,\delta \in \mathbb{R}\,</math> such that <math>\,|y(t)|<\delta , \forall t\in\mathbb{R}\,</math> ) |
Revision as of 14:53, 17 September 2008
Formal Definition of a Stable System
A system is called stable if for any bounded input $ \,x(t)\, $
( $ \,\exists \epsilon \in \mathbb{R}\, $ such that $ \,|x(t)|<\epsilon , \forall t\in\mathbb{R}\, $ )
yields a bounded output $ \,y(t)\, $.
( $ \,\exists \delta \in \mathbb{R}\, $ such that $ \,|y(t)|<\delta , \forall t\in\mathbb{R}\, $ )
Formal Definition of an Unstable System
A system is called unstable if there exists a bounded input $ \,x(t)\, $
( $ \,\exists \epsilon \in \mathbb{R}\, $ such that $ \,|x(t)|<\epsilon , \forall t\in\mathbb{R}\, $ )
that yields a unbounded output $ \,y(t)\, $.
( there is no $ \,\delta \in \mathbb{R}\, $ such that $ \,|y(t)|<\delta , \forall t\in\mathbb{R}\, $ )