(New page: Given:<br> <math>e^{2jt} \rightarrow SYSTEM \rightarrow te^{-2jt}</math><br> <math>e^{-2jt} \rightarrow SYSTEM \rightarrow te^{2jt}</math><br> Solve: <br> <math>cos(2t) \rightarrow SYSTEM...)
 
Line 1: Line 1:
 
Given:<br>
 
Given:<br>
<math>e^{2jt} \rightarrow SYSTEM \rightarrow te^{-2jt}</math><br>
+
<math>e^{2jt} \rightarrow SYSTEM \rightarrow te^{-2jt}</math><br><br>
 
<math>e^{-2jt} \rightarrow SYSTEM \rightarrow te^{2jt}</math><br>
 
<math>e^{-2jt} \rightarrow SYSTEM \rightarrow te^{2jt}</math><br>
  
 
Solve: <br>
 
Solve: <br>
<math>cos(2t) \rightarrow SYSTEM \rightarrow ?</math><br>
+
<math>cos(2t) \rightarrow SYSTEM \rightarrow ?</math><br><br>
 +
<math>cos(2t) = \frac{e^{2jt}+e^{-2jt}}{2}</math><br><br>
 +
<math>cos(2t) \rightarrow SYSTEM \rightarrow \frac{1}{2}te^{-2jt}+\frac{1}{2}te^{2jt}</math>

Revision as of 10:04, 17 September 2008

Given:
$ e^{2jt} \rightarrow SYSTEM \rightarrow te^{-2jt} $

$ e^{-2jt} \rightarrow SYSTEM \rightarrow te^{2jt} $

Solve:
$ cos(2t) \rightarrow SYSTEM \rightarrow ? $

$ cos(2t) = \frac{e^{2jt}+e^{-2jt}}{2} $

$ cos(2t) \rightarrow SYSTEM \rightarrow \frac{1}{2}te^{-2jt}+\frac{1}{2}te^{2jt} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood