Line 1: Line 1:
 
==Problem==
 
==Problem==
A linear system’s response to <math>e^{2jt}</math> is <math>te^{-2jt}</math>, and its response to <math>e^{-2jt}</math> is <math>te^{2jt}</math>. What is the system’s response to <math>cos(2t)</math>?
+
A linear system’s response to <math>e^{2jt}</math> is <math>te^{-2jt}</math>, and its response to <math>e^{-2jt}</math> is <math>te^{2jt}</math>. What is the system’s response to <math>\cos{(2t)}</math>?
  
 
==Solution==
 
==Solution==
Line 32: Line 32:
  
 
<math>\cos{(2t)} = \frac{1}{2}\cdot 2\cos{(2t)} = \frac{1}{2}(e^{2jt} \; + \; e^{-2jt})</math>
 
<math>\cos{(2t)} = \frac{1}{2}\cdot 2\cos{(2t)} = \frac{1}{2}(e^{2jt} \; + \; e^{-2jt})</math>
 +
 +
 +
conclusion:
 +
 +
 +
The respone to <math>\cos{(2t)}</math> is <math>\frac{1}{2}(e^{2jt} \; + \; e^{-2jt})</math>

Revision as of 20:40, 16 September 2008

Problem

A linear system’s response to $ e^{2jt} $ is $ te^{-2jt} $, and its response to $ e^{-2jt} $ is $ te^{2jt} $. What is the system’s response to $ \cos{(2t)} $?

Solution

If the system is linear, then the following is true:

For any $ x_{1}(t) \; \rightarrow \; y_{1}(t) $ and $ x_{2}(t) \; \rightarrow \; y_{2}(t) $

and any complex constants $ a $ and $ b $


then


$ ax_{1}(t) \; + \; bx_{2}(t) \; \rightarrow \; ay_{1}(t) \; + \; by_{2}(t) $


and "conveniently":

$ e^{2jt} \; + \; e^{-2jt} = \cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(-2t)} \; + \; j \sin{(-2t)} $           (by Euler's Formula)

$ =\cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(2t)} \; - \; j \sin{(2t)} $           ($ \cos{(-x)}=\cos{(x)} $ and $ \sin{(-x)}=-\sin{(x)} $)

$ =2\cos{(2t)} $


therefore:


$ \cos{(2t)} = \frac{1}{2}\cdot 2\cos{(2t)} = \frac{1}{2}(e^{2jt} \; + \; e^{-2jt}) $


conclusion:


The respone to $ \cos{(2t)} $ is $ \frac{1}{2}(e^{2jt} \; + \; e^{-2jt}) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett