(Invertible Systems)
(Invertible Systems)
Line 1: Line 1:
== Invertible Systems ==
+
== Time Invariant Systems ==
 
   
 
   
A system is invertible if distinct inputs yield distinct outputs.
+
A system is time invariant if for any function x(t) a time shift of the function x(t-t0) the output function y(t) is time shifted in the same manner, y(t-t0).
  
Invertible System:
 
 
y(t) = <math>\frac{3*x(t) + 8}{1}</math>
 
 
x(t) = <math>\frac{y(t) - 8}{3}</math>
 
 
x(t) -> |Sys 1| -> y(t) -> |Sys 2| -> x(t)
 
 
The two equations are inverses of each other.
 
  
Noninvertible System:
+
A system is time variant if this time shift is not present, or is distorted in the output function.
+
y(t) = <math>t^4</math>
+
 
+
x(t) = <math>t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
+
 
+
x(t) = <math>-t</math>    ->    |Sys|    ->    y(t) = <math>t^4</math>
+
+
The System is not invertible because for a given set of inputs you cannot differentiate which of the output will result.
+

Revision as of 12:33, 16 September 2008

Time Invariant Systems

A system is time invariant if for any function x(t) a time shift of the function x(t-t0) the output function y(t) is time shifted in the same manner, y(t-t0).


A system is time variant if this time shift is not present, or is distorted in the output function.

Alumni Liaison

EISL lab graduate

Mu Qiao