Line 3: Line 3:
 
'''Sample Space, Axioms of probability (finite spaces, infinite spaces)'''  
 
'''Sample Space, Axioms of probability (finite spaces, infinite spaces)'''  
  
<math> P(A) \geq 0 </math> for all events A
+
1. <math> P(A) \geq 0 </math> for all events A
 +
 
 +
2. <math>P(\omega)=1</math>
 +
 
 +
3. If A & B are disjoint then <math>P(A\cup B)=P(A)+P(B)</math>
 +
 
  
 
'''Properties of Probability laws'''
 
'''Properties of Probability laws'''
Line 22: Line 27:
 
'''Bayes rule and total probability'''
 
'''Bayes rule and total probability'''
  
<math>P(A|B) = \frac{P(A \cap B)}{P(B)}</math>
+
<math>P(B)=P(B\cap A_1) + P(B \cap\ A_2) +...+P(B\cap A_n)= P(B|A_1)P(A)+P(B|A_2)P(A_2)+...+P(B|A_n)P(A_n)</math>
 
+
I am not so sure about this formula being Bayes rule! But please correct me if i am wrong
+
  
 
'''Definitions of Independence and Conditional independence'''
 
'''Definitions of Independence and Conditional independence'''
  
 +
Independence:
 +
A & B are independent if <math>P(A\cap B)=P(A)P(B)</math>
 +
side note: if A&B are independent then P(A|B)=P(A)
 +
 +
Conditional Independence:
 +
A&B are conditionally independent given C if <math>P(A\cap B|C)=P(A|C)P(B|C)=\frac{P(A\cap C)}{P(C)} \frac{P(B\cap C)}{P(C)}</math>
  
 
'''Definition and basic concepts of random variables, PMFs'''
 
'''Definition and basic concepts of random variables, PMFs'''
  
 +
Random Variable: a map/function from outcomes to real values
  
'''The common random variables:''' bernoulli, binomial, geometric, and how they come about in problems. AlSo
+
Probability Mass Function (PMF) let z be a script x
their PMFs.
+
<math>P_x (z) = P(x=z)</math>
  
Geometric RV
+
'''The common random variables:''' bernoulli, binomial, geometric, and how they come about in problems. Also their PMFs.
  
P(X=k) = (1-p)^(k-1) * p  for k>=1
+
Geometric RV:
 +
 
 +
where X is # of trials until the first success
 +
 
 +
<math>P(X=k) = p(1-p)^{(k-1)}</math> for k>=1
  
 
<math> E[X] = 1/p \!</math>
 
<math> E[X] = 1/p \!</math>
  
 +
<math>Var(x)=\frac{(1-p)}{p^2}</math>
  
Binomial R.V.
+
 
 +
Binomial R.V. "many biased coins"
 +
with parameters n and p where n is the number of outcomes.
 +
 
 +
where X is # of successes in n trials and is the sum of independent, identically distributed outcomes.
  
 
P(X=k) = nCk * p^k * (1-p)^(n-k) for  k=0,1,2,...n
 
P(X=k) = nCk * p^k * (1-p)^(n-k) for  k=0,1,2,...n
  
E[X]=np VAR[X]=(1-p)/p^2
+
E[X]=np VAR[X]=np(1-p)
 +
 
 +
Bernoulli R.V "one biased coin"
 +
with parameter p
 +
 
 +
X=1 if A occurs and X=0 otherwise
 +
 
 +
P(1)=1
 +
 
 +
E[x]=p
  
 +
Var(X)=p(1-p)
  
 
'''Definition of expectation and variance''' and their properties
 
'''Definition of expectation and variance''' and their properties

Revision as of 10:03, 26 September 2008

You can get/put ideas for what should be on the cheat sheet here. DO NOT SIGN YOUR NAME

Sample Space, Axioms of probability (finite spaces, infinite spaces)

1. $ P(A) \geq 0 $ for all events A

2. $ P(\omega)=1 $

3. If A & B are disjoint then $ P(A\cup B)=P(A)+P(B) $


Properties of Probability laws


Definition of conditional probability, and properties thereof

$ P(A|B) = \frac{P(A \cap B)}{P(B)} $

Properties:

1) $ P(A|B) \ge 0 $

2) $ P( \Omega |B) = 1\! $

3) if A1 and A2 are disjoint $ P(A1 \cup A2|B) = P(A1|B) + P(A2|B) $

Bayes rule and total probability

$ P(B)=P(B\cap A_1) + P(B \cap\ A_2) +...+P(B\cap A_n)= P(B|A_1)P(A)+P(B|A_2)P(A_2)+...+P(B|A_n)P(A_n) $

Definitions of Independence and Conditional independence

Independence: A & B are independent if $ P(A\cap B)=P(A)P(B) $ side note: if A&B are independent then P(A|B)=P(A)

Conditional Independence: A&B are conditionally independent given C if $ P(A\cap B|C)=P(A|C)P(B|C)=\frac{P(A\cap C)}{P(C)} \frac{P(B\cap C)}{P(C)} $

Definition and basic concepts of random variables, PMFs

Random Variable: a map/function from outcomes to real values

Probability Mass Function (PMF) let z be a script x $ P_x (z) = P(x=z) $

The common random variables: bernoulli, binomial, geometric, and how they come about in problems. Also their PMFs.

Geometric RV:

where X is # of trials until the first success

$ P(X=k) = p(1-p)^{(k-1)} $ for k>=1

$ E[X] = 1/p \! $

$ Var(x)=\frac{(1-p)}{p^2} $


Binomial R.V. "many biased coins" with parameters n and p where n is the number of outcomes.

where X is # of successes in n trials and is the sum of independent, identically distributed outcomes.

P(X=k) = nCk * p^k * (1-p)^(n-k) for k=0,1,2,...n

E[X]=np VAR[X]=np(1-p)

Bernoulli R.V "one biased coin" with parameter p

X=1 if A occurs and X=0 otherwise

P(1)=1

E[x]=p

Var(X)=p(1-p)

Definition of expectation and variance and their properties

$ Var(X) = E[X^2] - (E[X])^2 \! $


Joint PMFs of more than one random variable

PX(x)=(SUM of all y)[PXY(x,y)]

PY(y)=(SUM of all x)[PXY(x,y)]

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison