(4 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
A system is memoryless if for any <math>t\in \mathbb{R}</math> only on the input at <math>t_0,</math>
 
A system is memoryless if for any <math>t\in \mathbb{R}</math> only on the input at <math>t_0,</math>
   Eg:
+
    
 +
Eg:
 +
 
 
<pre> Y(t) = X(t) + X(t-1){ memoryless}
 
<pre> Y(t) = X(t) + X(t-1){ memoryless}
  Y(t) = X(t)+X(t-1)  { with memory}.<pre>/
+
  Y(t) = X(t)+X(t-1)  { with memory}.</pre>
  
  
Line 12: Line 14:
  
 
Eg:
 
Eg:
<pre> Y(t) = 2x(t) + 3
+
<pre> Y(t) = 2x(t) + 3.</pre>
 +
 
 +
'''Causalty'''
 +
 
 +
A system is called causal if output at any given time only depends on input in present and past(not future)ie; for any time <math>t_0,</math>
 +
 
 +
Y(<math>t_0,</math>) only depends on X(t) with t<<math>t_0,</math>
 +
 
 +
Y(t) = X(t+1) {non causal}
 +
 
 +
Y(t) = X(t-1){causal}

Latest revision as of 07:57, 18 September 2008

Memory less system

A system is memoryless if for any $ t\in \mathbb{R} $ only on the input at $ t_0, $

Eg:

 Y(t) = X(t) + X(t-1){ memoryless}
 Y(t) = X(t)+X(t-1)  { with memory}.


Invertible systems

A system is invertible if distinct inputs yield distinct outputs.

Eg:

 Y(t) = 2x(t) + 3.

Causalty

A system is called causal if output at any given time only depends on input in present and past(not future)ie; for any time $ t_0, $

Y($ t_0, $) only depends on X(t) with t<$ t_0, $

Y(t) = X(t+1) {non causal}

Y(t) = X(t-1){causal}

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett