(New page: << Back to Homework 3 Homework 3 Ben Horst: A :: B :: C ----)
 
(did it)
Line 3: Line 3:
 
Homework 3 Ben Horst:  [[HW3.A Ben Horst _ECE301Fall2008mboutin| A]]  ::  [[HW3.B Ben Horst _ECE301Fall2008mboutin| B]]  ::  [[HW3.C Ben Horst _ECE301Fall2008mboutin| C]]
 
Homework 3 Ben Horst:  [[HW3.A Ben Horst _ECE301Fall2008mboutin| A]]  ::  [[HW3.B Ben Horst _ECE301Fall2008mboutin| B]]  ::  [[HW3.C Ben Horst _ECE301Fall2008mboutin| C]]
 
----
 
----
 +
 +
==Answer==
 +
If the system is linear (it is) then the following should be true:
 +
 +
Thus, if we say
 +
 +
x1 =  exp(2jt)  and  x2 = exp(-2jt)
 +
 +
then
 +
 +
y1 = t exp(-2jt)  and  y2 = t exp(2jt)
 +
 +
 +
That means that:
 +
 +
x1 + x2 ->|system|-> y1 + y2
 +
 +
 +
Since    <math>\cos(2t) =  {e^{j2t} + e^{-j2t}  \over 2}</math>
 +
 +
Then we can suggest that <math>{1 \over 2t}x1 + {1 \over 2t}x2 -> |system| -> {1 \over 2t}y1 + {1 \over 2t}y2 </math>
 +
 +
This leads to the conclusion that the input of cos(2t) would be <math>{1 \over 2t}x1 + {1 \over 2t}x2</math>
 +
 +
Which, simplified, is: <math>\cos(2t) \over t</math>.

Revision as of 09:57, 19 September 2008

<< Back to Homework 3

Homework 3 Ben Horst: A  :: B  :: C


Answer

If the system is linear (it is) then the following should be true:

Thus, if we say

x1 = exp(2jt) and x2 = exp(-2jt)

then

y1 = t exp(-2jt) and y2 = t exp(2jt)


That means that:

x1 + x2 ->|system|-> y1 + y2


Since $ \cos(2t) = {e^{j2t} + e^{-j2t} \over 2} $

Then we can suggest that $ {1 \over 2t}x1 + {1 \over 2t}x2 -> |system| -> {1 \over 2t}y1 + {1 \over 2t}y2 $

This leads to the conclusion that the input of cos(2t) would be $ {1 \over 2t}x1 + {1 \over 2t}x2 $

Which, simplified, is: $ \cos(2t) \over t $.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett