(Part B: The basics of linearity)
Line 1: Line 1:
 
=Part B: The basics of linearity=
 
=Part B: The basics of linearity=
 
==System’s response to cos(2t)==
 
==System’s response to cos(2t)==
 +
Using Euler's formula, we get
 +
 +
<math>e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\,</math><br>
 +
<math>e^{(-2jt)} = cos{(2t)} - jsin{(2t)} --> system --> t*{(cos{(2t)} + jsin{(2t)})}\,</math><br><br>

Revision as of 16:47, 19 September 2008

Part B: The basics of linearity

System’s response to cos(2t)

Using Euler's formula, we get

$ e^{(2jt)} = cos{(2t)} + jsin{(2t)} --> system --> t*{(cos{(2t)} - jsin{(2t)})}\, $
$ e^{(-2jt)} = cos{(2t)} - jsin{(2t)} --> system --> t*{(cos{(2t)} + jsin{(2t)})}\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang