Line 13: Line 13:
  
 
<math> x[n] = e^{j*pi*n}  ->  n*e^{-j*pi*n} </math>
 
<math> x[n] = e^{j*pi*n}  ->  n*e^{-j*pi*n} </math>
<math> x[n] =
+
 
 +
<math> x[n] \to Sys 1 \to n*x[-n] </math>

Revision as of 14:22, 18 September 2008

The Basics of Linearity

A system is linear if its inputs are sequentially equal to the outputs for a certain function:

$ x(t) = a*x1(t) + b*x2(t) = a*y1(t) + b*y2(t) $


Take for a simple example:

Ex) What is the output of:

$ x[n] = e^{j*pi*n} -> n*e^{-j*pi*n} $

$ x[n] \to Sys 1 \to n*x[-n] $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman