(6A)
(6A)
Line 16: Line 16:
  
 
It is not time invariant.
 
It is not time invariant.
 +
 +
 +
== 6B ==
 +
If superposition works, integrating input will yield integration of output,
 +
integration of <math> u[n-1] </math> is \delta [n-1], thus u[n] as an input will yield the desired output.

Revision as of 17:32, 12 September 2008

6A

$ \,x(t-k) \to System \to y(t)=(k+1)^{2}x(t-k-1)\, $


Proof:

$ x(t-k) \to System \to y(t)=(k+1)^{2}x(t-k-1) \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =(k+1)^{2}x(t-t0-k-1)\, $


$ x(t-k) \to Time Shift(t0) \to y(t)=x(t-t0-k) \to System \to z(t)=(k1+1)^{2}y(t-k1-1) $

$ \, =(t0+k+1)^{2}x(t-t0-k-1)\, $

It is not time invariant.


6B

If superposition works, integrating input will yield integration of output, integration of $ u[n-1] $ is \delta [n-1], thus u[n] as an input will yield the desired output.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang