(New page: == TIME INVARIANCE == Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invari...)
 
(Example of Time variant system and its proof)
 
(19 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
 
== TIME INVARIANCE ==
 
== TIME INVARIANCE ==
 
Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."
 
Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."
 +
 +
 +
== Example of Time invariant system and its proof ==
 +
<math>\,y(t)=e^{x(t)}\,</math>
 +
 +
 +
'''Proof:'''
 +
 +
<math>x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0)</math>
 +
 +
<math>\,                                                            =e^{x(t-t0)}\,</math>
 +
 +
 +
 +
<math>x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)}</math>
 +
 +
<math>\,                                                            =e^{x(t-t0)}\,</math>
 +
 +
 +
Both cascades yielded the same outputs, thus <math>\,y(t)=e^{x(t)}\,</math> is time invariant.
 +
 +
== Example of Time variant system and its proof ==
 +
<math>\,y(t)=x(2t)\,</math>
 +
 +
 +
'''Proof:'''
 +
 +
<math>x(t) \to System \to y(t)=x(2t) \to Time Shift(t0) \to z(t)=y(t-t0)</math>
 +
 +
<math>\,                                                            =x(2t-2t0)\,</math>
 +
 +
 +
 +
<math>x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=y(2t)</math>
 +
 +
<math>\,                                                            =x(2t-t0)\,</math>
 +
 +
 +
They yielded different outputs, thus <math>\,y(t)=x(2t)\,</math> is time-variant.

Latest revision as of 16:22, 12 September 2008

TIME INVARIANCE

Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."


Example of Time invariant system and its proof

$ \,y(t)=e^{x(t)}\, $


Proof:

$ x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =e^{x(t-t0)}\, $


$ x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)} $

$ \, =e^{x(t-t0)}\, $


Both cascades yielded the same outputs, thus $ \,y(t)=e^{x(t)}\, $ is time invariant.

Example of Time variant system and its proof

$ \,y(t)=x(2t)\, $


Proof:

$ x(t) \to System \to y(t)=x(2t) \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =x(2t-2t0)\, $


$ x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=y(2t) $

$ \, =x(2t-t0)\, $


They yielded different outputs, thus $ \,y(t)=x(2t)\, $ is time-variant.

Alumni Liaison

EISL lab graduate

Mu Qiao