(5 intermediate revisions by the same user not shown)
Line 28: Line 28:
  
 
IF eq 1 =  eq 2 the '''system is linear'''.
 
IF eq 1 =  eq 2 the '''system is linear'''.
 +
      '''a,b''' are complex numbers.
 +
 +
 +
 +
'''Example of a linear System'''.  Y[n]=X[n-1].
 +
 +
 +
  Proof: X1[n]--->'''system'''--->Y1[n]=X1[n-1]--->'''a'''--->a.X1[n-1]
 +
 +
         
 +
          X2[n]--->'''system'''--->Y2[n]=X2[n-1]--->'''b'''--->b.X2[n-1]
 +
 +
 +
          Now  a.X1[n-1] +  b.X2[n-1]= Z(n)
 +
 +
 +
 +
          '''And'''
 +
 +
 +
          X1[n]---->'''a'''-------->a.X1[n]
 +
          X2[n]---->'''b'''-------->b.X2[n]
 +
 +
 +
    '''{'''a.X1[n]+b.X2[n]'''}'''----->'''System'''------>W[n-1] '''=''' a.X1[n-1] +  b.X2[n-1]
 +
 +
 +
                  '''As the 2 results match the System is Linear'''
 +
 +
 +
 +
 +
 +
 +
 +
 +
'''Example Of a non-linear System'''  Y[t]=X[t]<math>^2</math>
 +
 +
 +
 +
 +
 +
now If
 +
 +
 +
X1(t)----> '''System'''---->Y1(t) =X1[t]<math>^2</math> <math>\times</math>'''a'''---->a.X1[t]<math>^2</math>
 +
                                                   
 +
 +
X2(t)----> '''System'''---->Y2(t) =X2[t]<math>^2</math> <math>\times</math>'''b'''---->b.X2[t]<math>^2</math>
 +
 +
 +
 +
 +
      a.X1[t]<math>^2</math> +  b.X2[t]<math>^2</math>= Z(t)              equation 1
 +
 +
                                         
 +
 +
 +
and
 +
   
 +
 +
 +
      X1(t)<math>\times</math>'''a'''----->X1(t).a
 +
 +
 +
 +
      X2(t)<math>\times</math>'''b'''----->X2(t).b
 +
 +
 +
'''now '''
 +
              {X1(t).a+X2(t).b}------>'''System'''----->{X1(t).a+X2(t).b}<math>^2</math>      equation 2
 +
 +
 +
 +
IF eq 1 '''not equal to'''  eq 2 the '''system is not linear'''.
 
       '''a,b''' are complex numbers.
 
       '''a,b''' are complex numbers.

Latest revision as of 12:51, 12 September 2008

now If


      X(t)-----> System---->z1(t)$ \times $a---->a.z1(t)
                                                    
      Y(t)-----> System---->z2(t)$ \times $b---->b.z2(t)


                       a.z1(t)+bz2(t)----->Z(t)       equation 1


and


     X(t)$ \times $a----->w1(t).a


     Y(t)$ \times $b----->w2(t).b


now

              w1(t).a+w2(t).b------>System----->W(t)       equation 2


IF eq 1 = eq 2 the system is linear.

      a,b are complex numbers.


Example of a linear System. Y[n]=X[n-1].


  Proof: X1[n]--->system--->Y1[n]=X1[n-1]--->a--->a.X1[n-1]


         X2[n]--->system--->Y2[n]=X2[n-1]--->b--->b.X2[n-1]


         Now   a.X1[n-1] +  b.X2[n-1]= Z(n)


         And


         X1[n]---->a-------->a.X1[n]
         X2[n]---->b-------->b.X2[n]


   {a.X1[n]+b.X2[n]}----->System------>W[n-1] = a.X1[n-1] +  b.X2[n-1] 


                 As the 2 results match the System is Linear





Example Of a non-linear System Y[t]=X[t]$ ^2 $



now If


X1(t)----> System---->Y1(t) =X1[t]$ ^2 $ $ \times $a---->a.X1[t]$ ^2 $
                                                    
X2(t)----> System---->Y2(t) =X2[t]$ ^2 $ $ \times $b---->b.X2[t]$ ^2 $



     a.X1[t]$ ^2 $ +  b.X2[t]$ ^2 $= Z(t)               equation 1



and


     X1(t)$ \times $a----->X1(t).a


     X2(t)$ \times $b----->X2(t).b


now

              {X1(t).a+X2(t).b}------>System----->{X1(t).a+X2(t).b}$ ^2 $      equation 2


IF eq 1 not equal to eq 2 the system is not linear.

      a,b are complex numbers.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood