Line 64: Line 64:
  
  
'''Example Of a non-linear System'''  Y[n]=X[n]<math>^2</math>
+
'''Example Of a non-linear System'''  Y[t]=X[t]<math>^2</math>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
now If
 +
 
 +
 
 +
X1(t)----> '''System'''---->Y1(t) =X1[t]<math>^2</math> <math>\times</math>'''a'''---->a.X1[t]<math>^2</math>
 +
                                                   
 +
 
 +
      Y(t)-----> '''System'''---->z2(t)<math>\times</math>'''b'''---->b.z2(t)
 +
 
 +
 
 +
                        a.z1(t)+bz2(t)----->Z(t)      equation 1
 +
 
 +
 
 +
and
 +
   
 +
 
 +
 
 +
      X(t)<math>\times</math>'''a'''----->w1(t).a
 +
 
 +
 
 +
 
 +
      Y(t)<math>\times</math>'''b'''----->w2(t).b
 +
 
 +
 
 +
'''now '''
 +
              w1(t).a+w2(t).b------>'''System'''----->W(t)      equation 2
 +
 
 +
 
 +
 
 +
IF eq 1 =  eq 2 the '''system is linear'''.
 +
      '''a,b''' are complex numbers.

Revision as of 12:42, 12 September 2008

now If


      X(t)-----> System---->z1(t)$ \times $a---->a.z1(t)
                                                    
      Y(t)-----> System---->z2(t)$ \times $b---->b.z2(t)


                       a.z1(t)+bz2(t)----->Z(t)       equation 1


and


     X(t)$ \times $a----->w1(t).a


     Y(t)$ \times $b----->w2(t).b


now

              w1(t).a+w2(t).b------>System----->W(t)       equation 2


IF eq 1 = eq 2 the system is linear.

      a,b are complex numbers.


Example of a linear System. Y[n]=X[n-1].


  Proof: X1[n]--->system--->Y1[n]=X1[n-1]--->a--->a.X1[n-1]


         X2[n]--->system--->Y2[n]=X2[n-1]--->b--->b.X2[n-1]


         Now   a.X1[n-1] +  b.X2[n-1]= Z(n)


         And


         X1[n]---->a-------->a.X1[n]
         X2[n]---->b-------->b.X2[n]


   {a.X1[n]+b.X2[n]}----->System------>W[n-1] = a.X1[n-1] +  b.X2[n-1] 


                 As the 2 results match the System is Linear





Example Of a non-linear System Y[t]=X[t]$ ^2 $



now If


X1(t)----> System---->Y1(t) =X1[t]$ ^2 $ $ \times $a---->a.X1[t]$ ^2 $
                                                    
      Y(t)-----> System---->z2(t)$ \times $b---->b.z2(t)


                       a.z1(t)+bz2(t)----->Z(t)       equation 1


and


     X(t)$ \times $a----->w1(t).a


     Y(t)$ \times $b----->w2(t).b


now

              w1(t).a+w2(t).b------>System----->W(t)       equation 2


IF eq 1 = eq 2 the system is linear.

      a,b are complex numbers.

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison